特点

  • 可重复添加
  • 有外部输入
  • 触发执行

背景

在 RAG 中,我们需要根据输入的问题去数据库里执行 embedding 搜索,查找相关的内容,从而查找到相似的内容(简称知识库搜索)。

在搜索的过程中,尤其是连续对话的搜索,我们通常会发现后续的问题难以搜索到合适的内容,其中一个原因是知识库搜索只会使用“当前”的问题去执行。看下面的例子:

用户在提问“第二点是什么”的时候,只会去知识库里查找“第二点是什么”,压根查不到内容。实际上需要查询的是“QA结构是什么”。因此我们需要引入一个【问题补全】模块,来对用户当前的问题进行补全,从而使得知识库搜索能够搜索到合适的内容。使用补全后效果如下:

功能

调用 AI 去对用户当前的问题进行补全。目前主要是补全“指代”词,使得检索词更加的完善可靠,从而增强上下文连续对话的知识库搜索能力。

遇到最大的难题在于:模型对于【补全】的概念可能不清晰,且对于长上下文往往无法准确的知道应该如何补全。

示例